Abstract

Light scattering in refractive media is an important optical phenomenon for computer graphics. While recent research has focused on multiple scattering, there has been less work on accurate solutions for single or low-order scattering. Refraction through a complex boundary allows a single external source to be visible in multiple directions internally with different strengths; these are hard to find with existing techniques. This paper presents techniques to quickly find paths that connect points inside and outside a medium while obeying the laws of refraction. We introduce: a half-vector based formulation to support the most common geometric representation, triangles with interpolated normals; hierarchical pruning to scale to triangular meshes; and, both a solver with strong accuracy guarantees, and a faster method that is empirically accurate. A GPU version achieves interactive frame rates in several examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.