Abstract

The state-specific Brillouin–Wigner multireference perturbation theory [which employs Jeziorski–Monkhorst parametrization of the wave function] using improved virtual orbitals, denoted as IVO-BWMRPT, is applied to calculate excitation energies (EEs) for methylene, ethylene, trimethylenemethane, and benzyne systems exhibiting various degrees of diradical character. In IVO-BWMRPT, all of the parameters appearing in the wave function ansatz are optimized for a specific electronic state. For these systems, the IVO-BWMRPT method provides EEs that are in close agreement with the benchmark results and experiments, where available, indicating that the method does not introduce imbalance in the target-specific treatment of closed- and open-shell states involved. The good performance of the present methodology is primarily related to structural compactness of the formalism. Overall, present findings are encouraging for both further development of the approach and chemical applications on the energy differences of strongly correlated systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.