Abstract

Recently developed single-root multireference Brillouin-Wigner coupled-cluster (MR BWCC) theory, which deals with one state at a time while employing a multiconfigurational reference wave function, is applied to the ground state of the F2 molecule using a two-determinant reference space at the level of the CCSD approximation. The method represents a brand-new coupled-cluster (CC) approach to quasidegenerate problems which combines merits of two theories: the single-reference CC method in a nondegenerate case and the Hilbert space MR CC method in quasidegenerate case. The method is able to switch itself from a nondegenerate to a fully degenerate case in a continuous manner, providing thus smooth potential energy surfaces. Moreover, in contrast to the Hilbert space MR CC approaches, it does not contain the so-called coupling terms and completely reduces to the standard single-reference CC method in a highly nondegenerate region. Using a [4s,3p,1d] and [4s,3p,2d,1f ] basis sets, the calculated potential energy curves are smooth, dissociate correctly and the results are compared with other available multireference techniques as well as experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.