Abstract

Triangular meshes are widely used as primary representation of surface models for networked gaming and for complex interactive design in manufacturing. Accurate triangulation of a surface with sharp features (highly varying curvatures, holes) may require an extremely large number of triangles. Fast transmission of such large triangle meshes is critical to many applications that interactively manipulate geometric models in remote networked environments. The need for a succinct representation is therefore not only to reduce static storage requirements, but also to consume less network bandwidth and thus reduce the transmission time. In this paper we address the problem of defining a space efficient encoding scheme for both lossless and error-bounded lossy compression of triangular meshes that is robust enough to handle directly arbitrary sets of triangles including non-orientable meshes, non-manifold meshes and even non-mesh cases. The compression is achieved by capturing the redundant information in both the topology (connectivity) and geometry with possibly property attributes. Example models and results are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.