Abstract

We developed a new method for obtaining surface-enhanced Raman scattering (SERS) spectra with extremely high sensitivity and spectral resolution. In this method, thousands of SERS spectra are acquired, followed by a data selection procedure based on density-based spatial clustering of applications with noise (DBSCAN). Each spectrum is recorded by exposure to a single nanosecond laser pulse to avoid the effect of time averaging. The reconstructed spectrum consists of the data that belong to the clusters. The method was applied to a crystal violet aqueous solution with a concentration of 10-7 mol/L. The results suggest that several minor Raman peaks were successfully recovered, which cannot be detected in conventional SERS measurements. Moreover, the method is also effective for separately observing Raman peaks that overlap with other neighboring peaks. This method extends the possibilities of SERS and will contribute to future high-resolution spectroscopy in condensed phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.