Abstract

High-fidelity diffractive surfaces have been generated with single-point diamond-turning techniques. A key to the success of this technique is the ability to shape the diamond tool tip to provide the optimum phase-relief profile, given manufacturing constraints. Replication technology is used to transfer the phase-relief surface into a thin epoxy or photopolymer layer on a glass substrate. Diffraction efficiency results for a wide range of zone widths are presented to provide the reader with a baseline of expected performance for replicated visible and near-infrared diffractive optical elements. In addition, a new method for analyzing diffractive surface structures is presented. The ray-trace algorithm quickly provides accurate results of predicted diffraction efficiency for arbitrary zone profiles, which is extremely valuable in predicting manufacturing errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call