Abstract

We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca(2+)) channels during an action potential and the number of such Ca(2+) channels within active zones of frog neuromuscular junctions. Analysis revealed ∼36 Ca(2+) channels within each active zone, similar to the number of docked synaptic vesicles but far less than the total number of transmembrane particles reported based on freeze-fracture analysis (∼200-250). The probability that each channel opened during an action potential was only ∼0.2. These results suggest why each active zone averages only one quantal release event during every other action potential, despite a substantial number of docked vesicles. With sparse Ca(2+) channels and low opening probability, triggering of fusion for each vesicle is primarily controlled by Ca(2+) influx through individual Ca(2+) channels. In contrast, the entire synapse is highly reliable because it contains hundreds of active zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.