Abstract

Single-pixel imaging (SPI) stands out in computational imaging for its simplicity and adaptability, yet its performance has been hampered by artifacts from translational motion. Existing solutions heavily rely on accurate motion modeling, requiring additional hardware and computational costs. In this Letter, we propose translational motion-agnostic SPI (TMA-SPI), a novel, to the best of our knowledge, single-object SPI framework agnostic to arbitrary translational motion. Our dual-domain optimization method leverages the translation invariance property of the amplitude spectrum in the Fourier domain, combined with the spatially finite and nonnegative constraints in the image domain, to produce a clear image of the moving object without any motion estimation or compensation. Through both simulation and the deployment of a real imaging prototype, we demonstrate its superior performance over the conventional SPI method. Our framework is expected to extend the applicability of SPI, offering significant improvements for dynamic sensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.