Abstract

We have observed single photon double K-shell photoionization in the C(2)H(2n) (n=1-3) hydrocarbon sequence and in N(2) and CO, using synchrotron radiation and electron coincidence spectroscopy. Our previous observations of the K(-2) process in these molecules are extended by the observations of a single photon double photoionization with one core hole created at each of the two neighboring atoms in the molecule (K(-1)K(-1) process). In the C(2)H(2n) sequence, the spectroscopy of K(-1)K(-1) states is much more sensitive to the bond length than conventional electron spectroscopy for chemical analysis spectroscopy based on single K-shell ionization. The cross section variation for single photon K(-1)K(-1) double core ionization in the C(2)H(2n) sequence and in the isoelectronic C(2)H(2n), N(2) and CO molecules validates a knock-out mechanism in which a primary ionized 1s photoelectron ejects another 1s electron of the neighbor atom. The specific Auger decay from such states is clearly observed in the CO case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call