Abstract

Single-photon devices such as switches, beam splitters, and circulators are fundamental components to construct photonic integrated quantum networks. In this paper, two V-type three-level atoms coupled to a waveguide are proposed to simultaneously realize these functions as a multifunctional and reconfigurable single-photon device. When both the two atoms are driven by the external coherent fields, the difference in the phases of the coherent driving induces the photonic Aharonov-Bohm effect. Based on the photonic Aharonov-Bohm effect and setting the two-atom distance to match the constructive or destructive interference conditions among photons travelling along different paths, a single-photon switch is achieved since the incident single photon can be controlled from complete transmission to complete reflection by adjusting the amplitudes and phases of the driving fields. When properly changing the amplitudes and phases of the driving fields, the incident photons are split equally into multiple components as a beam splitter operated with different frequencies. Meanwhile, the single-photon circulator with reconfigurable circulation directions can also be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call