Abstract

Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as light detection and ranging and positron-emission tomography. The demands placed on on-chip readout circuitry impose stringent trade-offs between fill factor and spatiotemporal resolution, causing many contemporary designs to severely underuse the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs. We provide optimized design instances for various sensor parameters and compute explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization of a 60 × 60 photodiode sensor using only 142 TDCs. The design guarantees registration and unique recovery of up to four simultaneous photon arrivals using a fast decoding algorithm. By contrast, a cross-strip design requires 120 TDCs and cannot uniquely decode any simultaneous photon arrivals. Among other realistic simulations of scintillation events in clinical positron-emission tomography, the above design is shown to recover the spatiotemporal location of 99.98% of all detected photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.