Abstract
The quantum router is an indispensable element in the future quantum network. In this study, by calculating the fidelity of the atom, we show that the quantum router proposed by J. Lu et al. (Phys. Rev. A 89, 013805, 2014) achieves quantum information-holding. After the single photon passes through the atom, the fidelity of the atom decreases from the maximum value after a period of time and rises to the maximum value of 1. Even upon changing the size of the classical field, this phenomenon will not disappear, only undergo a cycle change. This means such a single-photon quantum router can be applied experimentally since quantum state can be perfectly held after the routing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.