Abstract

In Part I of this two-part letter on single-photon-memory measurement-device-independent quantum secure direct communication (SPMQC), we reviewed the fundamentals and evolution of quantum secure direct communication (QSDC). In this Part II, we propose a practical protocol and analyze its secrecy capacity. In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed. However, block-based transmission of quantum states is utilized in MDI-QSDC, which requires practical quantum memory that is still unavailable at the time of writing. For circumventing this impediment, we propose the SPMQC protocol for dispensing with high-performance quantum memory. The performance of the proposed protocol is characterized by simulations considering realistic experimental parameters, and the results show that it is feasible to implement SPMQC by relying on existing technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call