Abstract
The emergence of quantum mechanics and general relativity has transformed our understanding of the natural world significantly. However, integrating these two theories presents immense challenges, and their interplay remains untested. Recent theoretical studies suggest that the single-photon interference covering huge space can effectively probe the interface between quantum mechanics and general relativity. We developed an alternative design using unbalanced Michelson interferometers to address this and validated its feasibility over an 8.4km free-space channel. Using a high-brightness single-photon source based on quantum dots, we demonstrated single-photon interference along this long-distance baseline. We achieved a phase measurement precision of 16.2mrad, which satisfied the measurement requirements for a gravitational redshift at the geosynchronous orbit by 5 times the standard deviation. Our results confirm the feasibility of the single-photon version of the Colella-Overhauser-Werner experiment for testing the quantum effects in curved spacetime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.