Abstract

A novel scheme to realize stable single-photon interference and router-control is demonstrated in this paper. Phase difference between clockwise and counter-clockwise single-photons is controlled by time-division phase modulation in an optic fiber Sagnac loop. Due to the annular geometric configuration of the Sagnac loop, clockwise and counter-clockwise single-photons travel the same optical path and have the same slowly-varying phase drifts, which are automatically compensated. Furthermore, clockwise and counter-clockwise single-photons encounter the same polarization mode dispersion, which is also automatically compensated at the exit port of the Sagnac interferometer. Long-distance single-mode optic fiber at 1550 nm is used in our experimental realization. Fringe visibility of single-photon interference higher than 98% and fidelity of single-photon router-control higher than 90% have been obtained in a Sagnac fiber loop of 5 km. We also realized a stable single-photon interference in Sagnac fiber loops as long as 27 and 52 km. The corresponding fringe visibilities were higher than 94% and 84%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.