Abstract

Deterministic integration of site-controlled quantum dots with photonic crystal waveguides is demonstrated, which allows positioning the dots for optimal overlap with the waveguide modes. The coupling efficiency (β-factor) of quantum dot emission to propagating waveguide modes ranging from 0 to 88% is measured accounting for statistical variations of quantum dot properties. Using site controlled quantum dots permits us to distinguish between the spectral and spatial origins of fluctuations in β. The role of Fabry-Pérot modes that prevent reaching a deterministic coupling between quantum dots and photonic crystal waveguides is revealed, and ways to overcome this problem are proposed. The results are useful for constructing high-flux single photon emitters based on multiplexed single photon sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.