Abstract

Single-photon cooling (SPC), noted for its potential as a versatile method for cooling a variety of atomic species, has recently been demonstrated experimentally. In this paper, we study possible ways to improve the performance of SPC by applying it to atoms trapped inside a wedge billiard. The main feature of the wedge billiard for atoms, also experimentally realized recently, is that the nature of atomic trajectories within it changes from stable periodic orbit to random chaotic motion with the change in wedge angle. We find that a high cooling efficiency is possible in this system with a relatively weak dependence on the wedge angle and that chaotic dynamics, rather than a regular orbit, is more desirable for enhancing the performance of SPC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call