Abstract

We theoretically investigate the dynamic interaction of a quantum dot in a nanocavity with time-symmetric single-photon pulses. The simulations, based on a wave-function approach, reveal that almost perfect single-photon absorption occurs for quantum-dot--cavity systems operating on the edge between strong- and weak-coupling regimes. The computed maximum absorption probability is close to unity for pulses with a typical length comparable to half of the Rabi period. Furthermore, the dynamic control of the quantum-dot energy via electric fields allows the freezing of the light-matter interaction, leaving the quantum dot in its excited state. Shaping of single-photon wave packets by the electric field control is limited by the occurrence of chirping of the single-photon pulse. This understanding of the interaction of single-photon pulses with the quantum-dot--cavity system provides the basis for the development of advanced protocols for quantum-information processing in the solid state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call