Abstract

In low-power applications of photovoltaic (PV) systems, the transformerless grid-connected inverters have been preferred to increase the efficiency and reduce the cost, size, and power losses when they are compared to the ones with the transformer. A transformerless single-phase inverter topology with a single dc-link capacitor for the grid-connected PV systems is proposed in this paper. The proposed inverter has been simulated by using a cooperation process of the MATLAB and SPICE package programs and it has been implemented for experimental verification. The proposed inverter reduces the high-frequency common-mode leakage current caused by parasitic capacitances of PV panels, whereas it is controlled with the unipolar sinusoidal pulsewidth modulation. Also, the results show that the common-mode voltage remains constant. The efficiency of the proposed inverter has been compared to that of the most common topologies having the dc-link decoupling during the zero voltage states. This paper is accompanied by a video file demonstrating the power loss distribution in the inverter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call