Abstract
The Feature Weighting Classifier (FWC) is an efficient multi-class classification algorithm for text data that uses Information Gain to directly estimate per-class feature weights in the classifier. This classifier requires only a single pass over the dataset to compute the feature frequencies per class, is easy to implement, and has memory usage that is linear in the number of features. Results of experiments performed on 128 binary and multi-class text and web datasets show that FWC’s performance is at least comparable to, and often better than that of Naive Bayes, TWCNB, Winnow, Balanced Winnow and linear SVM. On a large-scale web dataset with 12,294 classes and 135,973 training instances, FWC trained in 13 s and yielded comparable classification performance to a state of the art multi-class SVM implementation, which took over 15 min to train.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.