Abstract

An amplifier based on a highly-doped chromium zinc-selenide (Cr:ZnSe) crystal is proposed to increase the pulse energy emitted by an electron bunch after it passes through an undulator magnet. The primary motivation is a possible use of the amplified undulator radiation emitted by a beam circulating in a particle accelerator storage ring to increase the particle beam's phase-space density-a technique dubbed optical stochastic cooling (OSC). This paper uses a simple four energy level model to estimate the single-pass gain of Cr:ZnSe and presents numerical calculations combined with wave-optics simulations of undulator radiation to estimate the expected properties of the amplified undulator wave-packet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.