Abstract

Cu-doped CdS quantum dots (QDs) have been synthesized in water using 3-mercaptopropionic acid (3-MPA) as the capping agent. They exhibit intense photoluminescence and excellent color tunability, unlike most of the QDs synthesized/dispersed in water so far. Complete characterization of these aqueous doped CdS QDs has been performed for the first time, along with a single particle level elucidation of their exciton dynamics using fluorescence correlation spectroscopy. Photoactivation via dim/dark to bright particle conversion is observed at higher excitation powers. Dispersive blinking kinetics in undoped QDs reflects the involvement of a broad distribution of trap states. A lesser extent of dispersity is observed for doped QDs, in which hole-capture by Cu-defect states predominates. Excitation fluence dependence of the blinking rate highlights the role of Auger recombination in undoped QDs, which is suppressed significantly upon doping, due to disruption of the electron-hole correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.