Abstract
Inelastic neutron scattering experiments were performed at intermediate and high momentum transfer, up to 88.2 Å−1, to study the temperature dependence of single hydrogen mean kinetic energy in polycrystalline and liquid hydrogen sulphide (H2S), in the temperature range 16–206 K. Values of the hydrogen mean kinetic energy were extracted, within the impulse approximation, by fitting to the high momentum transfer data a model response function, obtained from a momentum distribution which is the orientational average of a multivariate Gaussian function. The extracted kinetic energies are compared with a harmonic model for the vibrational and roto-translational dynamics. The model makes use of the hydrogen-projected density of states worked out from intermediate momentum transfer data, as well as of optical frequencies determined from Raman and infrared (IR) spectroscopy. A fairly good agreement is obtained in the whole temperature range, while noticeably lower values for the kinetic energy are found if a single atom momentum distribution of isotropic Gaussian shape is assumed in the model response function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.