Abstract

We study the Brownian dynamics of a solid particle on a vibrating solid surface. Phenomenologically, the interaction between the two solid surfaces is modeled by solid friction, and the Gaussian white noise models the vibration of the solid surface. The solid friction force is proportional to the sign of relative velocity. We derive the Fokker-Planck (FP) equation for the time-dependent probability distribution to find the particle at a given location. We calculate analytically the steady state velocity distribution function, mean-square velocity and diffusion coefficient in d-dimensions. We present a generic method of calculating the autocorrelations in d-dimensions. This results in one dimension in an exact evaluation of the steady state velocity autocorrelation. In higher dimensions our exact general expression enables the analytic evaluation of the autocorrelation to any required approximation. We present approximate analytic expressions in two and three dimensions. Next, we numerically calculate the mean-square velocity and steady state velocity autocorrelation function up to d = 3 . Our numerical results are in good agreement with the analytically obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.