Abstract

Single, thermally thick particles of lodgepole pinewood were pyrolyzed under well-defined conditions of industrial importance. Particle thickness, heating level, moisture content, density, and grain axis relative to one-dimensional heating were varied using a Box-Behnken experimental design. Gross product fractions, as well as components therein, were measured and the batch yields were correlated with second-order polynomials. The empirical equations correlating the batch yields, together with their prediction uncertainties, are presented and are suitable for use in simulations of wood combustion and thermal conversion. Comparison of large particle pyrolysis product distributions to other studies of small-particle pyrolysis yields shows the trends with particle size to be consistent. Tar yield minima depend on both particle size and heating rate. Gas yield is dependent on both particle size and heating intensity. Because some process controllables were found to alter product yields from large particles in a multiplicative way, rather than an additive way, suggestions for future experiments are made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call