Abstract

Recent numerical results for the single-particle spectral function and optical conductivity of the two-dimensional Hubbard and t−J models are reviewed. Already for two holes in systems of sixteen to twenty sites (≥ 10% doping) a large electronic Fermi surface, compatible with Luttinger’s theorem, is observed. The full single-particle Green’s function is examined, and is shown to exhibit quasiparticle-like behavior, with dispersion consistent with the band structure of the non-interacting limit, and band width scaling approximately as J for J smaller than t. The optical conductivity of the Hubbard and t−J models is shown to have many features in common with recent experiments on copper oxide superconductors. The importance of the often neglected 3-site terms which arise in the derivation of the t−J model from the Hubbard model for optical properties is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.