Abstract
Single object tracking, in which a target is often initialized manually in the first frame and then is tracked and located automatically in the subsequent frames, is a hot topic in computer vision. The traditional tracking-by-detection framework, which often formulates tracking as a binary classification problem, has been widely applied and achieved great success in single object tracking. However, there are some potential issues in this formulation. For instance, the boundary between the positive and negative training samples is fuzzy, and the objectives of tracking and classification are inconsistent. In this paper, we attempt to address the above issues from the fuzzy system perspective and propose a novel tracking method by formulating tracking as a fuzzy classification problem. First, we introduce the fuzzy strategy into tracking and propose a novel fuzzy tracking framework, which can measure the importance of the training samples by assigning different memberships to them and offer more strict spatial constraints. Second, we develop a fuzzy least squares support vector machine (FLS-SVM) approach and employ it to implement a concrete tracker. In particular, the primal form, dual form, and kernel form of FLS-SVM are analyzed and the corresponding closed-form solutions are derived for efficient realizations. Besides, a least squares regression model is built to control the update adaptively, retaining the robustness of the appearance model. The experimental results demonstrate that our method can achieve comparable or superior performance to many state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.