Abstract

The preoptic area of the hypothalamus (POA) is essential for sleep regulation. However, the cellular makeup of the POA is heterogeneous, and the molecular identities of the sleep-promoting cells remain elusive. To address this question, this study compares mice during recovery sleep following sleep deprivation to mice allowed extended sleep. Single-nucleus RNA sequencing (single-nucleus RNA-seq) identifies one galanin inhibitory neuronal subtype that shows upregulation of rapid and delayed activity-regulated genes during recovery sleep. This cell type expresses higher levels of growth hormone receptor and lower levels of estrogen receptor compared to other galanin subtypes. single-nucleus RNA-seq also reveals cell-type-specific upregulation of purinergic receptor (P2ry14) and serotonin receptor (Htr2a) during recovery sleep in this neuronal subtype, suggesting possible mechanisms for sleep regulation. Studies with RNAscope validate the single-nucleus RNA-seq findings. Thus, the combined use of single-nucleus RNA-seq and activity-regulated genes identifies a neuronal subtype functionally involved in sleep regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call