Abstract
The translation of messenger RNA sequences into polypeptide sequences according to the genetic code is central to life. How this process, which relies on the ribosomal machinery, arose from much simpler precursors is unclear. Here, we demonstrate that single nucleotides charged with an amino acid couple with amino acids linked to the 5'-terminus of an RNA primer in reactions directed by the nucleotides of an RNA template in dilute aqueous solution at 0 °C. When a mixture of U-Val, A-Gly and G-Leu competed for coupling to Gly-RNA, base pairing dictated which dipeptide sequence formed preferentially. The resulting doubly anchored dipeptides can retain their link to the primer for further extension or can be fully released under mild acidic conditions. These results show that a single-nucleotide-based form of translation exists that requires no more than oligoribonucleotides and anchored amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.