Abstract

Genetic variation within species is commonly structured in a hierarchical manner which may result from superimposition of processes acting at different spatial and temporal scales. In organisms of limited dispersal ability, signatures of past subdivision are detectable for a long time. Studies of contemporary genetic structure in such taxa inform about the history of isolation, range changes and local admixture resulting from geographically restricted hybridization with related species. Here we use a set of 139 transcriptome-derived, unlinked nuclear single nucleotide polymorphisms (SNP) to assess the genetic structure of the Carpathian newt (Lissotriton montandoni, Lm) and introgression from its congener, the smooth newt (L. vulgaris, Lv). Two substantially differentiated groups of Lm populations likely originated from separate refugia, both located in the Eastern Carpathians. The colonization of the present range in north-western and south-western directions was accompanied by a modest loss of variation; admixture between the two groups has occurred in the middle of the Eastern Carpathians. Local, apparently recent introgression of Lv alleles into several Lm populations was detected, demonstrating increased power for admixture detection in comparison to a previous study based on a limited number of microsatellite markers. The level of introgression was higher in Lm populations classified as admixed than in syntopic populations. We discuss the possible causes and propose further tests to distinguish between alternatives. Several outlier loci were identified in tests of interspecific differentiation, suggesting genomic heterogeneity of gene flow between species.

Highlights

  • Most species are genetically structured, and genetic structure is often observed at multiple spatial scales [1,2]

  • Genetic structure is the result of a complex interplay of drift, gene flow, and natural selection acting on standing variation and new mutations [3,4,5]

  • We propose that the location of the refugium for the northern group was in the Eastern Carpathians close to the PolishUkrainian border, and that the refugium for the southern group was in the central part of the Eastern Carpathians in Romania

Read more

Summary

Introduction

Most species are genetically structured, and genetic structure is often observed at multiple spatial scales [1,2]. Identification of factors responsible for the observed spatial structuring of genetic diversity is a major goal of population genetics [8]. The quantification and understanding of genetic structure within species are of fundamental importance for inferential studies of population history, population ecology and biodiversity conservation [3,9,10]. Analyses of genetic structure are essential for several aspects of the study of adaptation [5,11,12,13,14,15,16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call