Abstract

BackgroundCurrent breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used. Large-scale sequence datasets generated primarily through Sanger Expressed Sequence Tag projects are available from a limited number of potato cultivars and access to next generation sequencing technologies permits rapid generation of sequence data for additional cultivars. When coupled with the advent of high throughput genotyping methods, an opportunity now exists for potato breeders to incorporate considerably more genotypic data into their decision-making.ResultsTo identify a large number of Single Nucleotide Polymorphisms (SNPs) in elite potato germplasm, we sequenced normalized cDNA prepared from three commercial potato cultivars: 'Atlantic', 'Premier Russet' and 'Snowden'. For each cultivar, we generated 2 Gb of sequence which was assembled into a representative transcriptome of ~28-29 Mb for each cultivar. Using the Maq SNP filter that filters read depth, density, and quality, 575,340 SNPs were identified within these three cultivars. In parallel, 2,358 SNPs were identified within existing Sanger sequences for three additional cultivars, 'Bintje', 'Kennebec', and 'Shepody'. Using a stringent set of filters in conjunction with the potato reference genome, we identified 69,011 high confidence SNPs from these six cultivars for use in genotyping with the Infinium platform. Ninety-six of these SNPs were used with a BeadXpress assay to assess allelic diversity in a germplasm panel of 248 lines; 82 of the SNPs proved sufficiently informative for subsequent analyses. Within diverse North American germplasm, the chip processing market class was most distinct, clearly separated from all other market classes. The round white and russet market classes both include fresh market and processing cultivars. Nevertheless, the russet and round white market classes are more distant from each other than processing are from fresh market types within these two groups.ConclusionsThe genotype data generated in this study, albeit limited in number, has revealed distinct relationships among the market classes of potato. The SNPs identified in this study will enable high-throughput genotyping of germplasm and populations, which in turn will enable more efficient marker-assisted breeding efforts in potato.

Highlights

  • Current breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used

  • Using normalized cDNA libraries and the Illumina Genome Analyzer 2 (GA2) platform, we generated 7.0 Gb of sequence increasing by 60-fold the amount of transcriptome sequence available for potato (Table 2)

  • Singletons from the GA2 platform were not used in downstream bioinformatic analyses due to quality issues associated with single pass short reads

Read more

Summary

Introduction

Current breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used. Large-scale sequence datasets generated primarily through Sanger Expressed Sequence Tag projects are available from a limited number of potato cultivars and access to generation sequencing technologies permits rapid generation of sequence data for additional cultivars. Development of a genome-wide set of markers polymorphic in elite germplasm would allow more cultivars and breeding clones to be genotyped and substantially advance potato breeding. With the emergence of genomics in the late 1990s, Expressed Sequence Tag (EST) projects were initiated for potato in which Sanger-based sequencing was used to catalog transcripts in an array of tissues and genotypes [22,23,24,25,26]. 237,583 sequences derived by Sanger sequencing are available for potato in the National Center for Biotechnology Information (NCBI) dbEST (Release 011110;[27]). Three cultivars, ‘Bintje’ (1905), ‘Kennebec’ (released in 1948), and ‘Shepody’ (1980), have substantial Sanger sequence datasets, and for all three cultivars, relatively low-coverage Sanger sequencing was employed

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.