Abstract

We investigated, using a computational model, the biophysical correlates of measured discharge patterns of lateral superior olive (LSO) neuron responses to monaural and binaural stimuli. The model's geometry was based on morphological data, and static electric properties of the model agree with available intracellular responses to hyperpolarizing current pulses. Inhibitory synapses were located on the soma and excitatory ones on the dendrites, which were modeled as passive cables. The active properties of the model were adjusted to agree with statistical measures derived from extracellular recordings. Calcium-dependent potassium channels supplemented the usual Hodgkin-Huxley characterization for the soma to produce observed serial interspike interval dependence characteristics. Intracellular calcium concentration is controlled by voltage- and calcium-dependent potassium channels and by calcium diffusion and homeostatic mechanisms. By adjusting the density of the calcium-dependent potassium channels, we could span the observed range of transient response patterns found in different LSO neurons. Inputs from the two ears were modeled as Poisson processes to describe the responses to tone-burst stimuli. Transient and sustained responses to monaural and binaural tone-burst stimuli over a wide range of stimulus conditions could be well described by varying only the model's inputs. As found in recordings, model responses having similar discharge rates but different binaural stimulus combinations exhibited differences in interval statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.