Abstract
Stimulus-responsive mode is highly desirable for improving the precise monitoring and physiological efficacy of endogenous biomarkers (EB). However, its integrated application for visual detection and therapy is limited by inappropriate use of responsive triggers and poor delivery of EB signal-transducing agents, which remain challenging in simultaneous monitoring and noninvasive therapy of EB and EB-mediated pathological events. Target microRNA (miRNA) as controllable reaction triggers and DNAzyme as signal-transducing agent are proposed to develop target-stimulated multifunctional nanocabinets (MFNCs) for the visual tracking of both miRNA and miRNA-mediated anticancer events. The MFNCs, equipped with a target-discriminating sequence-incorporated DNAzyme motif, can specifically release therapeutic molecules through target-triggered conformational switches, accompanied by transduction signal output. Target detection and molecule release performance are recorded in parallel via reverse dual-signal feedback at the single-molecule level. In addition, the intrinsic thermal-replenishing of the MFNCs leads to tumor ablation without invasive exogenous aids. The system achieves visual target quantification, anticancer molecule real-time tracking, and tumor suppression in vivo and in vitro. This work proposes a new paradigm for precise visual exploration of EB or EB-mediated bio-events and provides a demonstration of efficacious all-in-one detection and therapy based on the target-triggered multifunctional nanosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.