Abstract

Intramuscular and surface electromyographic (EMG) activities were recorded from the left and right upper trapezius muscle of eight healthy male subjects during 5-min long static contractions at 2% and 5% of the maximal voluntary contraction (MVC) force. Intramuscular signals were detected by wire electrodes while surface EMG signals were recorded with linear adhesive electrode arrays. The surface EMG signals were averaged using the potentials extracted from the intramuscular EMG decomposition as triggers. The conduction velocity of single motor units (MUs) was estimated over time from the averaged surface potentials while average rectified value and mean power spectral frequency were computed over time from 0.5 s epochs of surface EMG signal. It was found that (1) MUs were progressively recruited after the beginning of sustained contractions of the upper trapezius muscle at 2% and 5% MVC, (2) the conduction velocity of the MUs active since the beginning of the contraction significantly decreased over time, and (3) although the CV of single MUs significantly decreased, the mean power spectral frequency of the surface EMG did not show a consistent trend over time. It was concluded that spectral surface EMG analysis, being affected by many physiological mechanisms, may show limitations for the objective assessment of localized muscle fatigue during low force, sustained contractions. On the contrary, single motor unit conduction velocity may provide an early indication of changes in muscle fiber membrane properties with sustained activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.