Abstract

Biomolecular condensates, first discovered in eukaryotic cells, were recently found in bacteria. The small size of these organisms presents unique challenges for identifying and characterizing condensates. Here, we describe a single-molecule approach for studying biomolecular condensates in live bacterial cells. Specifically, we outline a protocol to quantify the mobility of RNA polymerase in E. coli using HILO (highly inclined and laminated optical sheet) illumination with the photoconvertible fluorophore mMaple3. Our analysis classifies the trajectories of individual molecules by their local density, enabling a comparison of molecular mobilities between different subcellular compartments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.