Abstract

Effective drug discovery and optimization can be accelerated by techniques capable of deconvoluting the complexities often present in targeted biological systems. We report a single-molecule approach to study the binding of an alternative splicing regulator, muscleblind-like 1 protein (MBNL1), to (CUG)n = 4,6 and the effect of small molecules on this interaction. Expanded CUG repeats (CUGexp) are the causative agent of myotonic dystrophy type 1 by sequestering MBNL1. MBNL1 is able to bind to the (CUG)n–inhibitor complex, indicating that the inhibition is not a straightforward competitive process. A simple ligand, highly selective for CUGexp, was used to design a new dimeric ligand that binds to (CUG)n almost 50-fold more tightly and is more effective in destabilizing MBNL1–(CUG)4. The single-molecule method and the analysis framework might be extended to the study of other biomolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.