Abstract
Optical detection and spectroscopy of single molecules has recently been achieved in solids at very low temperature. Until now only three host-guest combinations have fulfilled the stringent requirements for high-resolution single-molecule spectra. A large absorption cross section has to be paired with high fluorescence quantum yield, high photochemical stability, as well as the absence of any significant shelving in a bottleneck state. The photophysical properties of the single fluorescent molecule are strongly influenced by its 'nano-environment'. Here we report the properties of a new system: terrylene in the Shpol'skii matrix hexadecane. In this system a peak emission rate more than 107 photons/s is achieved. It is expected that such a Shpol'skii system is a prototype of a new class of materials which allow single-molecule spectra to be easily recorded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.