Abstract
We have used scanning tunneling microscopy, Auger electron spectroscopy, and density functional theory calculations to investigate thermal and photoinduced structural transitions in (fulvalene)tetracarbonyldiruthenium molecules (designed for light energy storage) on a Au(111) surface. We find that both the parent complex and the photoisomer exhibit striking thermally induced structural phase changes on Au(111), which we attribute to the loss of carbonyl ligands from the organometallic molecules. Density functional theory calculations support this conclusion. We observe that UV exposure leads to pronounced structural change only in the parent complex, indicative of a photoisomerization reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.