Abstract

Synapses between neurons are the primary loci for information transfer and storage in the brain. An individual neuron, alone, can make over 10000 synaptic contacts. It is, however, not easy to investigate what goes on locally within a synapse because many synaptic compartments are only a few hundred nanometers wide in size─close to the diffraction limit of light. To observe the biomolecular machinery and processes within synapses, in situ single-molecule techniques are emerging as powerful tools. Guided by important biological questions, this Perspective will highlight recent advances in using these techniques to obtain in situ measurements of synaptic molecules in three aspects: the cell-biological machinery within synapses, the synaptic architecture, and the synaptic neurotransmitter receptors. These advances showcase the increasing importance of single-molecule-resolution techniques for accessing subcellular biophysical and biomolecular information related to the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.