Abstract

Recent developments in single molecule force spectroscopy have allowed investigating the interaction between two redox partners, Azurin and Cytochrome C 551. Azurin has been directly chemisorbed on a gold electrode whereas cytochrome c has been linked to the atomic force microscopy tip by means of a heterobifunctional flexible cross-linker. When recording force-distance cycles, molecular recognition events could be observed, displaying unbinding forces of ∼95 pN for an applied loading rate of 10 nN/s. The specificity of molecular recognition was confirmed by the significant decrease of unbinding probability observed in control block experiments performed adding free azurin solution in the fluid cell. In addition, the complex dissociation kinetics has been here investigated by monitoring the unbinding forces as a function of the loading rate: the thermal off-rate was estimated to be ∼14 s −1, much higher than values commonly estimated for complexes more stable than electron transfer complexes. Results here discussed represent the first studies on molecular recognition between two redox partners by atomic force microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.