Abstract
Metal-enhanced fluorescence (MEF) is useful in single molecule detection (SMD) by increasing the photostability, brightness and increase in radiative decay rates of fluorophores. We have investigated MEF from an individual fluorophore tethered to a single silver nanoparticle and also a single fluorophore between a silver dimer. The fluorescence lifetime results revealed a near-field interaction mechanism of fluorophore with the metal particle. Finite-difference time-domain (FDTD) calculations were employed to study the distribution of electric field near the metal monomer and dimer. The coupling effect of metal particles on the fluorescence enhancement was studied. We have also investigated the photophysics of FRET near metal nanoparticles and our preliminary results suggest an enhanced FRET efficiency in the presence of a metal nanoparticle. In total, our results demonstrate improved detectability at the single molecule level for a variety of fluorophores and quantum dots in proximity to the silver nanoparticles due to the near-field metal-fluorophore interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.