Abstract

Single-molecule photobleaching (smPB) technique is a powerful tool for characterizing molecular assemblies. It can provide a direct measure of the number of monomers constituting a given oligomeric particle and generate the oligomer size distribution in a specimen. A major current application of this technique is in understanding protein aggregation, which is linked to many incurable diseases. Quantitative measurement of the size distribution of an aggregating protein in a physiological solution remains a difficult task, since techniques such as dynamic light scattering or fluorescence correlation spectroscopy (FCS) can provide an average size, but cannot accurately resolve the underlying size distribution. Here we describe the smPB method as implemented on a home-built total internal reflection fluorescence microscope (TIRF). We first describe the construction of a TIRF microscope, and then demonstrate the power of smPB by characterizing a solution of Amylin (hIAPP) oligomers, a 37-residue peptide whose aggregation is associated with Type II diabetes. We compare our results with FCS data obtained from the same specimen, and discuss the advantages and disadvantages of the two techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.