Abstract

Thin, platelike single crystals of p-terphenyl (PT) doped with terrylene impurity molecules can be prepared by spin-coating from solution. Strikingly, individual terrylene molecules can be observed traveling inside the crystal over distances of several micrometers by using single-molecule fluorescence imaging at room temperature. Analysis of the motion by single-particle tracking and correlation methods indicates that the molecules act as nanoprobes by exploring long, thin crack-like defects with correlated orientations, defects that can be difficult to observe by other means. Apparently, the regions accessible to the moving molecules are in the interior of the crystal and hence are partially protected from oxidation. In addition to the traveling molecules, which photobleach in times on the order of 32 s under continuous irradiation at 2 kW/cm2, two other spatially fixed populations are observed: one with transition dipole oriented along the c-axis of the crystal with a characteristic photobleaching time greater than 32 h, and one with a characteristic photobleaching time of 18 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.