Abstract

The ubiquitin-proteasome system (UPS) contributes to changes in cell state and homeostatic maintenance in humans by modulating the stability of about a third of human proteins. For example, cell-cycle regulation requires a central ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), which starts a ubiquitination cascade leading to the degradation of multiple targets. This targeted degradation is mediated by the 26S proteasome, a 2.5-MDa protein complex, which recognizes and degrades ubiquitinated proteins at rates partially controlled by the variations in ubiquitin chain topology. Substrate selectivity of ubiquitin ligases such as the APC/C and of the 26S proteasome from pools of near-identical targets reflects highly regulated kinetic mechanisms. Single-molecule techniques are powerful tools that allow distinction between differential substrate affinities and identification of reaction intermediates in complex mixtures. Here we describe fluorescence-based single-molecule imaging of in vitro ubiquitination reactions catalyzed by the APC/C and ubiquitin-dependent degradation reactions catalyzed by the 26S proteasome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.