Abstract

It is vital to construct luminescent single-molecule magnets (SMMs) and explore their applications in quantum computing technique and magneto-luminescence devices. In this work, we report a luminescent single-molecule magnet with thermally activated delayed fluorescence (TADF) based on metallofullerene DyY2N@C80. DyY2N@C80 was constructed by integrating dysprosium and yttrium ions into a fullerene cage. Magnetic results suggest that DyY2N@C80 exhibits magnetic hysteresis loops below 8 K originating from the Dy3+ ion. Moreover, DyY2N@C80 exhibits TADF originating from the Y3+-coordinated carbon cage, whose luminescence peak positions and peak intensities can be obviously influenced by Dy3+. Furthermore, a supramolecular complex of DyY2N@C80 and [12]Cycloparaphenylene ([12]CPP) was then prepared to construct a single-molecule magnet with multiwavelength luminescence. The effects of host-guest interaction on photoluminescence properties of DyY2N@C80 were disclosed. Theoretical calculations were also employed to illustrate the structures of DyY2N@C80 and DyY2N@C80⊂[12]CPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.