Abstract

The reactions between the [Ln(tta)(3)]·2H(2)O precursors (tta(-)=2-thenoyltrifluoroacetonate anion) and the tetrathiafulvalene-3-pyridine-N-oxide ligands (L(1)) lead to dinuclear complexes of formula [{Ln(tta)(3)(L(1))}(2)]·xCH(2)Cl(2) (x=0.5 for Ln=Dy(III) (1) and x=0 for Ln=Gd(III) (2)). The crystal structure reveals that two {Ln(tta)(3)} moieties are bridged by two donors through the nitroxide groups. The Dy(III) centre adopts a distorted square antiprismatic oxygenated polyhedron structure. The antiferromagnetic nature of the exchange interaction between the two Dy(III) ions has been determined by two methods: 1) an empirical method using the [Dy(hfac)(3)(L(2))(2)] mononuclear complex as a model (3) (hfac(-)=1,1,1,5,5,5-hexafluoroacetylacetonate anion, L(2)=tetrathiafulvaleneamido-2-pyridine-N-oxide ligand), and 2) assuming an Ising model for the Dy(III) ion giving an exchange energy of -2.30 cm(-1), g=19.2 in the temperature range of 2-10 K. The antiferromagnetic interactions have been confirmed by a quantitative determination of J for the isotropic Gd(III) derivative (J=-0.031 cm(-1), g=2.003). Compound 1 displays a slow magnetisation relaxation without applied external magnetic fields. Alternating current susceptibility shows a thermally activated behaviour with pre-exponential factors of 5.48(4)×10(-7) s and an energy barrier of 87(1) K. The application of an external field of 1.6 kOe compensates the antiferromagnetic interactions and opens a new quantum tunnelling path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.