Abstract

Aptamers have emerged as promising molecular tools for small-molecule analyte sensing. However, the performance of such aptasensors is generally limited by leakage since it has been difficult to completely suppress signal in the absence of analyte, resulting in a compromise between sensitivity and specificity. Here, we describe a methodology for the ultrasensitive detection of analytes combining aptasensors with single-molecule kinetic fingerprinting. A short, fluorescently labeled DNA probe is utilized to detect the structural changes upon ligand binding to the designed hairpin-shaped aptasensor probe. The Poisson statistics of binding and dissociation events of the DNA probe to single surface-immobilized aptasensor molecules is monitored by total internal reflection fluorescence microscopy, permitting the high-accuracy discrimination of the ligand bound and ligand-free states, resulting in zero background. The programmable dynamics of the hairpin enables fine-tuning of the hybridization kinetics of the fluorescent probe, rendering the acquisition time sufficiently flexible to optimize discrimination. Remarkable detection limits are achieved for a diverse set of analytes when spiked into chicken meat extract: the nucleotide adenosine (0.3 pM), the insecticide acetamiprid (0.35 pM), and the dioxin-like toxin PCB-77 (0.72 pM), which is superior to recently reported aptasensors. Our generalizable method significantly improves the performance of aptasensors, with the potential to extend to other molecular biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.