Abstract

Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.