Abstract
Using two-photon excitation (TPE) at 700 nm as well as one-photon excitation (OPE) at 350 nm, we applied confocal fluorescence microscopy to detect single Coumarin-120 molecules in the solvents water and triacetin. To study the behavior of Coumarin-120 under different excitation conditions, fluorescence lifetimes, multichannel scaler traces, and autocorrelation curves have been measured simultaneously. A signal-to-background ratio of 1300 was achieved for TPE due to a very low background level. The detection efficiency of TPE is limited by other competing nonlinear processes, in particular continuum generation in the solvent. The applicable laser intensity for OPE is limited by two-step photolysis of the dye as shown by fluorescence correlation spectroscopy (FCS). The time-resolved fluorescence signals were analyzed by a maximum likelihood estimator to identify the fluorophore through its characteristic fluorescence lifetime. The average fluorescence lifetimes 4.8 ± 1.2 ns in water and 3.3 ± 0.6 ns in tri...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.