Abstract

The 4N1K peptide, which is derived from the C-terminal domain of thrombospondin-1 (TSP-1), is usually used as a functional mimic peptide for TSP-1. Knowledge about the interaction force of 4N1K/CD47 is important in explaining how TSP-1 affects the biological effect of CD47. Here we used a single-molecule force spectroscopy (SMFS) technique to explore the interaction of 4N1K/CD47 on both normal and oxidative human red blood cells (hRBCs) at single-molecule level. There was no interaction force between 4N1K and CD47 on normal hRBCs; however, we did find 4N1K-bound CD47 on oxidative hRBCs. We also detected interaction forces for 4N1K/CD47ex (extracellular domain of human CD47), and 4N1K/oxidative CD47ex. The interaction forces of 4N1K/CD47ex were almost consistent with those of 4N1K/oxidative CD47ex at the same loading rate. These results suggest that the conformational change of CD47 is critical for 4N1K-CD47 interaction on oxidative hRBCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.